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Abstract
Objectives To develop a deep-learning algorithm for anterior cruciate ligament (ACL) tear detection and to compare its accuracy
using two external datasets.
Methods A database of 19,765 knee MRI scans (17,738 patients) issued from different manufacturers and magnetic fields was
used to build a deep learning–based ACL tear detector. Fifteen percent showed partial or complete ACL rupture. Coronal and
sagittal fat-suppressed proton density or T2-weighted sequences were used. A Natural Language Processing algorithm was used
to automatically label reports associated with eachMRI exam.We compared the accuracy of our model on two publicly available
external datasets: MRNet, Bien et al, USA (PLoS Med 15:e1002699, 2018); and KneeMRI, Stajduhar et al, Croatia (Comput
Methods Prog Biomed 140:151-164, 2017). Receptor operating characteristics (ROC) curves, area under the curve (AUC),
sensitivity, specificity, and accuracy were used to evaluate our model.
Results Our neural networks achieved an AUC value of 0.939 for detection of ACL tears, with a sensitivity of 87% (0.875) and a
specificity of 91% (0.908). After retraining our model on Bien dataset and Stajduhar dataset, our algorithm achieved AUC of
0.962 (95% CI 0.930–0.988) and 0.922 (95% CI 0.875, 0.962) respectively. Sensitivity, specificity, and accuracy were respec-
tively 85% (95% CI 75–94%, 0.852), 89% (95% CI 82–97%, 0.894), 0.875 (95% CI 0.817–0.933) for Bien dataset, and 68%
(95% CI 54–81%, 0.681), 93% (95% CI 89–97%, 0.934), and 0.870 (95% CI 0.821–0.913) for Stajduhar dataset.
Conclusion Our algorithm showed high performance in the detection of ACL tears with AUC on two external datasets, demon-
strating its generalizability on different manufacturers and populations.
Summary This study shows the performance of an algorithm for detecting anterior cruciate ligament tears with an external
validation on populations from countries and continents different from the study population.
Key Points
• An algorithm for detecting anterior cruciate ligament ruptures was built from a large dataset of nearly 20,000 MRI with AUC
values of 0.939, sensitivity of 87%, and specificity of 91%.

• This algorithm was tested on two external populations from different other countries: a dataset from an American population
and a dataset from a Croatian population. Performance remains high on these two external validation populations (AUC of
0.962 and 0.922 respectively).
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Abbreviations
ACL Anterior cruciate ligament
CNN Convolutional neural networks
IoU Intersection over Union
NLP Natural Language Processing
PD Proton density
ReLU Rectified linear unit
SD Standard deviation

Introduction

Anterior cruciate ligament (ACL) ruptures are frequent, ac-
counting for more than 50% of knee injuries [1], and severe
since they may lead to knee instability with the risk of pro-
gression to osteoarthritis. Magnetic resonance imaging (MRI)
is the gold standard non-invasive examination and recom-
mended first-line procedure for diagnosing ACL tears and
identifying surgical candidates [2]. According to a recent me-
ta-analysis, MRI is able to provide an appreciable diagnostic
performance with a sensitivity of 87%, a specificity of 90%,
and an area under the curve (AUC) of 0.93 [3]. However, this
diagnostic performance may depend on radiologists’ experi-
ence and field of practice [4]. Artificial intelligence (AI) has
already proven its usefulness in medical imaging [5, 6], espe-
cially in musculoskeletal imaging [7]. Deep-learning methods
for ACL tear detection have been developed so far either on
datasets of less than 10,000 studies or without external vali-
dation and often on a single manufacturer images [8–10].

Our goal was to develop a deep-learning tool for ACL tear
detection using a large dataset and to compare its accuracy
using two external datasets (MRNet, USA [8]; and
KneeMRI, Croatia [9]).

Materials and methods

Dataset

To create our dataset, we retrospectively included 19,765 knee
MRI studies from 12 imaging centers, performed between
2009 and 2020, 15% (2,965) of which showed a partial or
complete ACL tear. Natural Language Processing was used
to automatically label reports associated with each MRI exam
and determine which exam showed an ACL rupture. Our
multi-centric institution has a general consent form signed
by each patient to allow or refuse retrospective data analysis
for research purposes. Only patients older than 16 years were
included. The most frequent indications for MRI were the
assessment of acute or chronic pain and trauma. The included
population consisted of 17,738 patients, 1,744 (9.8%) of
which had at least two magnetic resonance (MR) MRI exam-
inations, with an average of 2.2 MR scans. Mean age was 44

years with a standard deviation (SD) of 17 years and a female/
male ratio of 48% (8,514) / 52% (9,224). Of these 17,738
patients, 10,122 patients have been previously reported [10].
This prior article dealt with the development of a deep learn-
ing algorithm for the detection of meniscal tears and their
characterization (presence/absence of migrated meniscal frag-
ment) whereas in this article we study the performance of an
algorithm for detecting anterior cruciate ligament tears.

Examinations were issued from several manufacturers
(Philips Healthcare; GE Healthcare; and Siemens
Healthcare) and different magnetic fields (1 Tesla, 1.5 Tesla,
3 Tesla). Since knee MRI examinations were acquired in clin-
ical routine, all had at least standard sequences: coronal, axial,
and sagittal (either 2D or 3D with 2D reformatted images) fat-
suppressed proton density-weighted or fat-suppressed T2-
weighted sequences. MRI characteristics and acquisition pa-
rameters are detailed in Table 1. For the development of our
algorithm, we only used coronal and sagittal fat-suppressed
proton density (PD)–weighted or fat-suppressed T2-weighted
sequences.

Our dataset has been randomized into a training set (70%,
13,836 examinations) used to fit the parameters of the model,
a validation set (20%, 3,953 examinations) to provide an eval-
uation of the fitted model and to optimize the model’s
hyperparameters, and a test set (10%, 1,976 examinations) to
provide an evaluation of the final model. In each set, 15% of
the MRIs showed an ACL tear (2,075 in the training set, 593
in the validation set and 296 in the test set). All exams and
images corresponding to the same patients were in the same
split (training, validation, and test). The flowchart of the
dataset is presented in Fig. 1. Statistical comparisons across
splits for all the demographic variables were done. We relied
on chi2 square tests of independence for categorical variables
and one-way ANOVA for continuous ones. No statistical dif-
ferences were observed across splits at 0.05 alpha level.

Ground truth: Natural Language Processing on MRI
reports

We developed a Natural Language Processing (NLP) algo-
rithm to automatically label reports associated with each
MRI exam. To do so, 2643 reports were chosen at random
in the database, the large sample size ensuring that the subset
is representative of our population.

These 2643 reports were manually annotated with one of
the 2 possible labels “torn ACL” (746) or “normal ACL”
(1897). We split these 2643 reports into 2 sets: a set of 2511
reports to perform 5-fold cross-validation and a set of 132
reports that we used as an aggregated test set. We used a
bidirectional gated recurrent unit neural network fed by
sentences from results and conclusion parts. Each word of
the input sentences was represented by its corresponding em-
bedding which was computed with the Word2Vec algorithm
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[11, 12]. We selected the parameters (hidden layer size, word
embedding size) providing the best average area under the
receiver operating characteristic curve (AUC) on the 5 test
splits. To assign a label to the network predictions (normal
ACL or torn ACL), we concatenated all the predictions ob-
tained on the 5 test folds and selected the threshold maximiz-
ing the F1 Score.

To obtain a final model, we trained a bidirectional gated
recurrent unit neural network with the best parameters on the
2643 reports we used for cross-validation, using only 10% of
the reports as a validation set.

Deep convolutional neural network

Our deep-learningmodel consisted of two parts: a first model to
locate the ACL and a second to classify ACL as normal or torn.
A schematic illustration of our model can be seen in Fig. 2.

Metal artifact detection

We developed a deep convolutional neural network detecting
metallic artifacts on sequences in proton density with fat sat-
uration or in T2 with fat saturation, which allowed us to

Table 1 Age and sex distribution of the study population,
manufacturers, and MRI magnetic fields in our database and in each
set. *Patient age was missing data in about 52% of the MRI
examinations.** p values between training set, validation set, and test
set. A chi-square test was performed for categorical data (sex, ACL tear

prevalence, manufacturer, magnetic field strength). A one-way ANOVA
test was performed for non-categorical data (age, repetition-time, echo-
time). No statistical difference was found between these sets. *** Some
examinations contain several sagittal and/or coronal sequences

All dataset
(n = 19,765)

Training set
(n = 13,836)

Validation set
(n = 3,953)

Test set
(n = 1,976)

p **

Study population

Mean age (standard deviation)* 44 (18) 44 (18) 44 (18) 43 (18) 0.438

Female 48% 48% 47% 47% 0.199

ACL tear prevalence 15% 15% 15% 15% 0.729

Distribution by manufacturer

Philips 84% 84% 84% 85% 0.092
GE 12% 12% 12% 12%

Siemens 4% 4% 4% 3%

Distribution by magnetic field

3 Tesla 32% 33% 33% 31% 0.380
1.5 Tesla 17% 17% 16% 17%

1 Tesla 51% 50% 51% 53%

Mean repetition time (standard deviation) 2779 msec
(929 msec)

2756 msec
(858 msec)

2785 msec
(853 msec)

0.317

Mean echo time (standard deviation) 28 msec
(11 msec)

28 msec
(10 msec)

28 msec
(10 msec)

0.404

Number of PD-weighted or T2-weighted sequences in each set***

Number of coronal PD-weighted or T2-weighted sequence 21,763 15,203 4,397 2,163

Number of sagittal PD-weighted or T2-weighted sequence 24,489 17,078 4,999 2,412

Fig. 1 Flow chart. We retrospectively included 19,765 knee MRI studies
(17,738 patients) from 12 imaging centers performed between 2009 and
2020, 15% (2,965) of which shows a partial or complete ACL tear. The
dataset has been randomized into a training set (70%, 13,836
examinations) used to fit the parameters of the model, a validation set

(20%, 3,953 examinations) to provide an evaluation of the fitted model,
and to optimize the model's hyperparameters and a test set (10%, 1,976
examinations) to provide an evaluation of the final model. In each set,
15% of the MRIs showed an ACL tear (2,075 in the training set, 593 in
the validation set, and 296 in the test set)
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Fig. 2 Illustration of our model. The first models used for ACL
localization were built by linear regression from a meniscus localization
CNN that we had previously built. These models were connected in a
cascaded fashion to an ACL tear classifier which was composed of two

CNNs, one for sagittal view and one for coronal view. The architecture of
these CNNs is described in the figure. The final prediction was the
average of the two CNNs
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exclude examinations with metallic artifacts. We used the
same database of 19,765 knee MRI scans. From this database,
we selected exams containing words meaning that the patient
had been operated on, with a keyword search in the report
database. We found 1,200 exams. After looking at each MRI
one by one, we labeled these exams according to whether they
contained metallic artifacts. We then had a database of 1025
MRIs containing metal artifacts, to which we added 3000
examinations without metal artifacts. This database was divid-
ed into training set (70%), validation set (20%), and test set
(10%). We then trained a fully convolutional network that we
optimized through several hyperparameter tuning steps. The
final AUC of our algorithm was 0.985.With this metal artifact
detection model, all exams that contained metal artifact were
excluded.

ACL localization

Two coronal and sagittal localization models were used to
extract bounding box coordinates around ACL. These models
were built by linear regression from a meniscus localization
CNN that we had previously built [10]. The performance of
the models was evaluated on a test set of 197 examinations
annotated by a data scientist after training and under the su-
pervision of a radiologist. Intersection over Union (IoU) eval-
uation metric was used to measure the accuracy of our ACL
localizer model.

ACL crops produced by the localization models were
resized to a common size of 64 × 64 × 64 across volumes
and paired with the NLP found labels (“torn ACL” or “normal
ACL”). They were used as input for the ACL tear classifier.

ACL classification

The ACL tear classifier was made of two convolutional neural
networks (CNN): one for the sagittal plane and one for the
coronal plane. Both CNNs were composed of five convolu-
tion blocks. For the first four convolution blocks, each convo-
lution layer was activated by a rectified linear unit (ReLU)
function and followed by a batch normalization step. There
was a layer of MaxPooling 3D between each block. For the
final convolution block, the convolution layer was activated
by a sigmoid function and followed by a Global Average
Pooling 3D layer. To have only one prediction by knee MRI
exam, we averaged the output of the two CNNs. Keras deep
learning library (keras.io) and a TensorFlow backend (www.
tensorflow.org) were used to develop our CNNs. Training was
performed on a NVIDIA V100 graphic processing unit.

Training of the CNN

The two CNNs were trained with our training set of 13,864
examinations, all containing sagittal and coronal sequences.

This training set allowed us to compute the weights of the
CNN. Then, we used the validation set to tune the
hyperparameters. We finally tested our model accuracy using
the test set.

Heatmap generation

Heatmaps were generated using an in-house method [13].
This method had two different image generators, a similar
and adversarial. The studied model classifies the input image
with a certain label, healthy or pathological. On the one hand,
the similar generator will produce an image close to the orig-
inal image that will be classified by the studied model with the
same label. On the other hand, the adversarial generator will
produce an image that will be classified with the opposite
label. The heatmap is then defined as the absolute difference
between the two generated images. The main advantage of
this method is that the generators are built so that the differ-
ence between generated images only captures meaningful in-
formation for the classification model while producing images
close to the training database. Heatmaps are much less
corrupted by noise or non-meaningful features.

Double external validation

To evaluate the generalizability of our deep learning model
and compare its performance with pre-existing models, we
tested it on two external validation datasets: KneeMRI and
MRNet.

KneeMRI is a publicly available dataset collected by
Stajduhar et al [9]. It contains 917 sagittal PD-weighted ex-
aminations acquired with a Siemens Avanto 1.5-T scanner at
Clinical Hospital Centre Rijeka, Croatia, from 2007 until
2014. All theseMRI examinations were labeled based on both
report and additional reading by a radiologist. The dataset
consists of 690 non-injured ACL (≈ 75%), 172 partially in-
jured (≈ 20%) and 55 completely ruptured (≈ 5%) cases. Two
models were built in the publication: one model capable of
detecting injured ACL cases (partially and completely rup-
tured), differentiating them from normal (healthy) cases, and
one model capable of automatically detecting completely rup-
tured cases. Their models had an area under the curve of 0.894
for the injury-detection problem (partially and completely rup-
tured ACL) and 0.943 for the complete-rupture-detection
problem. Like the authors, we merged partially injured and
completely ruptured ACL into one category: ACL tear. We
randomly split the 917 examinations into three sets: 60% of
the examinations were in the training set, 20% of the exami-
nations were in the validation set, and 20% of the examina-
tions were in the test set. The prevalence of ACL tears was the
same in all three sets. We decided to adopt a “60/20/20” split
to follow Bien et al external validation experiments setup on
KneeMRI dataset and harmonize subsequent comparisons as
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much as possible. We first tested our model on the KneeMRI
test set without re-training, then we did retraining and fine-
tuning schemes for adapting our deep learning model to
KneeMRI training and validation set. This procedure is used
to obtain increased performances on new datasets. Starting
from the original model weights (obtained using our internal
dataset), we ran an additional training experiment using the
data from the KneeMRI dataset. This training experiment was
run using the same parameters as the one used for the internal
dataset, apart from the learning rate whose value was set to
one-tenth of the original one. Using a lower learning rate is
common practice when running fine-tuning experiments, in
order to provide more control over the speed at which the
model’s weights adapt to the new dataset. The weights corre-
sponding to the lowest loss value on the validation split of the
KneeMRI dataset were retained for final evaluation on the test
split. The objective was to classify the examinations as rup-
tured or unruptured ACL. In the rest of the article, this dataset
will be referred to as the Stajduhar dataset.

We used another publicly available dataset of 1,370 exam-
inations collected at Stanford University Medical Center be-
tween 2001 and 2012 by Bien et al [8]. Each examination
contained the following sequences: coronal T1-weighted, cor-
onal T2 with fat saturation, sagittal proton density (PD)–
weighted, sagittal T2 with fat saturation, and axial PD-
weighted with fat saturation. Examinations were performed
using GE scanners, 775 (56%) with a 3-T magnetic field, the
remainder with a 1.5-T magnetic field. MRIs were labeled
using radiological reports. Bien et al provide the training set
and the validation set of MRNet in free access on its website.
However, the test set was not freely available on the site. So,
we used the MRNet validation set as a test set and split the
training set into a training set and a validation set. These splits
were comparable to each other for age and sex as well as
prevalence of ACL tears. Bien et al developed MRNet, a
convolutional neural network for classifying MRI series and
combined predictions from 3 series per exam using logistic
regression. In detecting abnormalities, ACL tears, and
meniscal tears, this model achieved area under the receiver
operating characteristic curve (AUC) values of 0.937 (95%
CI 0.895, 0.980), 0.965 (95% CI 0.938, 0.993), and 0.847
(95% CI 0.780, 0.914), respectively, on the internal validation
set [8]. This dataset will be further referred to as the Bien
dataset.

Statistics

Statistical analysis was performed by using MATLAB (ver-
sion 2013a; MathWorks) and MedCalc (version 14.8;
MedCalc Software). We evaluated the performance of our
deep learning model by measuring sensitivity, specificity, ac-
curacy, and area under the receiver operating characteristic
curve (AUC). 95% confidence intervals were calculated for

sensitivity, specificity, accuracy, and AUC. These confidence
intervals were calculated using the bootstrap method with re-
placement [14]. Once the model training process is completed,
successive random draws of prediction values from the orig-
inal samples are used to compute a resampled distribution of
the model’s predictions. Quantized values of that resampled
distribution for a given α level provide its confidence interval.
In this work, we used n = 10000 for each confidence interval
calculation. We would like to stress the fact that the training
process is only carried out once, and not for each bootstrap
sample. A threshold was determined using the point on the
ROC curve that optimized the Youden index. We calculated
the AUC before and after the exclusion of examinations con-
taining metallic artifacts in the test set of our database.

Results

Model performance

The NLP model achieved an AUC of 0.984 (95% CI: 0.946–
1.0) and the ACL localizer an IoU of 0.72 (95%CI: 0.70–0.73)
in our database.

The ACL classifier CNN had an AUC of 0.939 (95%CI:
0.918–0.956) in the hold-out test set of 1,971 examinations for
ACL tear detection. After excluding examinations containing
metallic artifacts in the test set (N = 103), we obtained anAUC
of 0.941(95%CI: 0.922–0.959).

The threshold that optimized Youden’s index was 0.38.
Using this threshold, our model achieved a sensitivity of
87% (95% CI 84–92%, 0.875) and a specificity of 91%
(95% CI 89–92%, 0.908). Its accuracy was 0.902 (95% CI
0.889–0.914).

Heatmaps were generated to better understand which areas
of the image were the most discriminating for our model. We
applied a threshold to the heatmap in order to keep only the
values above the 99th percentile. Examples of resulting heat
maps are shown in Fig. 3.

External validation

Without retraining, our model obtained an AUC of 0.941
(95% CI: 0.897–0.978) on the Bien dataset and 0.860
(95%CI: 0.829–0.892) on the Stajduhar dataset. After retrain-
ing our model on the Bien dataset, external validation on their
test set resulted in an AUC of 0.962 (95% CI 0.930–0.988).
By choosing the threshold that optimized Youden’s index,
which was 0.37, sensitivity was 85% (95% CI 75–94%,
0.852), and specificity was 89% (95% CI 82–97%, 0.894).
The accuracy was 0.875 (95%CI: 0.817–0.933). After retrain-
ing our model on the Stajduhar dataset, external validation on
the Stajduhar test set resulted in an AUC of 0.922 (95% CI
0.875, 0.962). Choosing a threshold of 0.60 which optimized

European Radiology



Youden’s index, sensitivity was 68% (95% CI 54–81%,
0.681) and specificity was 93% (95% CI 89–97%, 0.934).
The accuracy was 0.870 (95% CI: 0.821–0.913) (Fig. 4).

Table 2 compares our performance with that of Bien et al
and Stajduhar et al.

Discussion

Our study demonstrates the ability of a deep learning model to
accurately detect an ACL tear onMRI, both on an internal and
on two external validation sets. To our knowledge, this is the
first study with such a size of training dataset and with two
external validations. Our model was competitive compared to
similar models from the literature. Although our AUCs were

calculated on different sets, the population and prevalence of
the two sets are comparable.

Liu et al [15] developed a deep learning–based diagnosis
system to detect ACL tears with a sensitivity and specificity of
0.96 and 0.96 respectively (AUC 0.98). Our model had a
sensitivity and specificity of 0.87 and 0.91 respectively
(AUC 0.939). Liu et al’s dataset was a smaller dataset of
350 MRIs that were all performed on the same 3.0-T imaging
unit using the same imaging protocol, whereas our algorithm
was trained using a large 19,765 knee MRIs, multicentric (12
centers) dataset of patients examined by several different MRI
scanners with different magnetic field strengths (1/1.5/3 T)
and different MRI protocols. The variety of our training set
may explain the performances on external datasets, which
further improved when retraining the model specifically for
those datasets.

Fig. 3. Examples of torn ACL
detected by the algorithm with
corresponding Heatmaps.
Cropped sagittal proton density–
weighted MR image showing two
ACL complete tear. Heatmap
showing the high-probability
areas in the ACL on which our
model based its interpretation of
an ACL tear
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Bien et al [8] developed a deep learning model (MRNet)
for detecting general abnormalities and specific diagnoses
(ACL and meniscal tears) on MRI examinations. Their model
performance for ACL tear detection achieved a sensitivity of
0.759, a specificity of 0.968, and an AUC of 0.965 (95% CI
0.938, 0.993). Their most beneficial series was the coronal T1-
weighted sequence which may seem surprising since that se-
quence is rarely used in clinical practice to detect ACL rup-
ture. They also had a smaller dataset (1,370 examinations) and
all examinations were performed using the samemanufacturer
(GE).

The Stajduhar dataset was developed for semi-automated
detection of ACL injury on MRI [9]. Using manually selected
regions of interest, support vector machine, and random for-
ests model, they obtained an AUC of 0.894 for the ACL
injury-detection model and 0.943 for complete ACL rupture
diagnosis on their dataset. We could only validate externally
on the sagittal plane available in the Stajduhar dataset and it
prevented pooling predictions across acquisition planes which
could boost the model’s performance.

Recently, several teams have developed algorithms for the
detection of ACL lesions with high performance. Germann

et al [16] built a deep convolutional neural network for the
detection of surgically proven ACL tears. The DCNN had a
sensitivity of 0.96 and a specificity of 0.93, and an AUC of
0.935. Zhang et al [17] evaluated the diagnostic performance
of their deep learning approach for ACL lesion detection using
arthroscopy as the gold standard. The sensitivity and specific-
ity of their deep learning architecture were 0.957 and 0.976
respectively (AUC 0.960). This interest in building an auto-
matic classification tool for ACL injuries shows both its fea-
sibility and usefulness.

The use of NLP had an important place in our annotation
strategy. Our NLP model had a high AUC of 0.98 showing
that data mining from radiological reports could lower radiol-
ogists’ annotation costs in the field of medical imaging AI.
This is consistent with a proof of concept recently published
by Pinto dos Santos et al [18]. Several deep learning models
detecting ACL tears have been previously published with high
accuracies but with smaller datasets and sometimes without
external validation.

The area of explainability of deep learning models has not
yet produced stable and definitive methods. In our work, we
chose to use an algorithm recently introduced in [13] to

Fig. 4 AUC before and after fine tuning our model on external datasets. The area in light purple corresponds to confidence intervals

Table 2 Comparison of the
performance of our model, Bien
et al’s model (MRNet) and
Stajduhar et al’s model

Our model’s AUC Bien et al’s AUC Stajduhar et al’s AUC

Our test set* 0.941

Bien et al dataset 0.962 on validation set** 0.965 on test set

Stajduhar et al dataset 0.922 0.911 0.894

*on examinations that do not contain metallic artifacts

**the test set we used is not the same as the test set of Bien et al. We used Bien et al’s validation set
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generate heatmaps, which not only relies on the model itself
but also makes use of the training database to enforce coherent
results. The main advantage of this method is that the gener-
ators are built so that the difference between generated images
only captures meaningful information for the classification
model while producing images close to the training database.
In particular, heatmaps are much less corrupted by noise or
non-meaningful features.

Our study has limitations. First, ACL labels were ex-
tracted from radiological reports without surgical correla-
tion and reports can sometimes be inaccurate. However,
arthroscopy is the gold standard with the limitations of
potential verification bias. Furthermore, our internal and
external validations showed the robustness of our AI
models, using a 3D architecture and a localization algo-
rithm to narrow the FOV and allow the classifier to focus
on ACL, in line with the results of Chang et al [19].
Second, we did not distinguish partial-thickness from
full-thickness ACL tears, which may be difficult for the
algorithm as it implies the detection of subtle nuances of
contour detection and signal alterations. Distinguishing
partial and full ACL tears is also a difficult issue for
radiologists reading MRI, even at 3T [20]. Such a diffi-
culty is due to the ACL anatomy and its lesion mecha-
nism, and to the information extent required for appropri-
ate clinical decisions. In such a scenario, any static imag-
ing method faces serious limitations, in spite of MR field
strength. Lastly, no comparison was made with the per-
formances of radiologist alone or assisted with the algo-
rithm. Our algorithm had a sensitivity of 87% (95% CI
84–91%) and specificity of 91% (95% CI 89–92%). A
recent review of radiologists’ performances for diagnos-
ing ACL tears using arthroscopy as the gold standard
showed a sensitivity of 87% (95 % CI 77–94 %) and a
specificity of 93 % (95 % CI 91–96 %) [21]. Although it
is not possible to make a direct comparison because of the
different gold standards, the performance of our algorithm
seems interesting. Long-term clinical benefits of AI-
model to detect ACL tear are still to prove, but in our
opinion, radiologists and also clinicians could improve
their diagnostic performances when assisted by the algo-
rithm, especially for radiologists with less experience in
musculoskeletal imaging. Bien et al [8] proved that pro-
viding model predictions significantly increased clinical
experts’ specificity in identifying ACL tears. It may re-
duce subjectivity, variability, and errors due to distraction
and fatigue.

To conclude, high detection accuracy for ACL tear was
achieved over large sample size. Moreover, under similar ex-
perimental conditions, the model achieved competitive perfor-
mances compared to similar models from the literature, dem-
onstrating its robustness. These experimental results suggest
the potential for clinical application of deep learning–based

approach to assist radiologists when diagnosing knee injuries.
Further studies are needed to evaluate the value of such a tool
for clinical practice.
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