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A B S T R A C T   

Objectives: To compare deep learning (True Fidelity, TF) and partial model based Iterative Reconstruction (ASiR- 
V) algorithm for image texture, low contrast lesion detectability and potential dose reduction. 
Methods: Anthropomorphic phantoms (mimicking non-overweight and overweight patient), containing lesions of 
6 mm in diameter with 20HU contrast, were scanned at five different dose levels (2,6,10,15,20 mGy) on a CT 
system, using clinical routine protocols for liver lesion detection. Images were reconstructed using ASiR-V 0% 
(surrogate for FBP), 60 % and TF at low, medium and high strength. Noise texture was characterized by 
computing a normalized Noise Power Spectrum filtered by an eye filter. The similarity against FBP texture was 
evaluated using peak frequency difference (PFD) and root mean square deviation (RMSD). Low contrast 
detectability was assessed using a channelized Hotelling observer and the area under the ROC curve (AUC) was 
used as figure of merit. Potential dose reduction was calculated to obtain the same AUC for TF and ASiR-V. 
Results: FBP-like noise texture was more preserved with TF (PFD from -0.043mm-1 to -0.09mm-1, RMSD from 
0.12mm-1 to 0.21mm-1) than with ASiR-V (PFD equal to 0.12 mm-1, RMSD equal to 0.53mm-1), resulting in a 
sharper image. AUC was always higher with TF than ASIR-V. In average, TF compared to ASiR-V, enabled a 
radiation dose reduction potential of 7%, 25 % and 33 % for low, medium and high strength respectively. 
Conclusion: Compared to ASIR-V, TF at high strength does not impact noise texture and maintains low contrast 
liver lesions detectability at significant lower dose.   

1. Introduction 

Technological developments in computed tomography (CT) have 
transformed patient care for many diseases and clinical scenarios. The 
importance of CT is reflected in the hundreds of millions of scans per-
formed each year [1]. However, its benefits in disease management 

come with the price of a very radiant nature – especially in younger 
patients or those who undergo repeated CT scans. Applying the ALARA 
(As Low As Reasonably Achievable) principle to appropriate CT exam-
inations remains mandatory, as absence of risk using ionizing radiation 
has not been demonstrated, even at low dose [2]. CT contributes to most 
of the population radiation exposure from medical X-ray imaging; for 

Abbreviations: ALARA, As Low As Reasonably Achievable; ASiR-V, adaptive statistical iterative reconstruction-V; AUC, area under the ROC curve; BMI, Body Mass 
Index; CHO, Channelized Hotelling Observer; CI, confidence interval; CNR, contrast-to-noise ratio; CT, computed tomography; CTDIvol, CT dose index; DDoG, 
difference of Gaussian; DLIR, deep learning iterative reconstruction; IR, iterative reconstruction; nNPSe, normalized noise power spectrum (NPS) with an eye filter; 
NI, Noise Index; PFD, peak frequency difference; RMSD, root mean square deviation; TF, True Fidelity. 
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example, in Switzerland, CT examinations represent only 10 % of 
studies, but 74 % of annual exposure to medical radiation [3]. 

CT manufacturers have implemented automatic tube current mod-
ulation, bow tie filters, lower tube tension (kVp), adaptive collimation 
and iterative reconstruction algorithms to reduce dose and optimize 
image quality [4–6]. Currently, iterative reconstruction (IR) is one of the 
most used, enabling substantial noise reduction compared to filtered 
back projection for high contrast diagnostic tasks, and allowing sub-
stantial dose reduction [7–11]. However, for low contrast tasks the 
advantage of using IR is limited, because of induced noise texture 
changes resulting in blurred images when compared to its FBP recon-
struction [7,12–14]. In addition, some studies have reported that image 
quality and the evaluation of specific anatomical regions could be 
compromised by the use of IR algorithms [15,16]. Indeed, IR algorithms 
change noise texture but also noise amplitude, resulting in a false 
high-quality visual impression with potentially massive dose reduction, 
especially if detectability of small low contrast objects are not taken into 
account [12]. 

Recently, deep learning iterative reconstruction (DLIR) algorithms 
have been developed, with a proven potential of considerable noise 
reduction without changing the typical noise texture of FBP images, 
therefore allowing dose reduction obtained by IR algorithms whilst 
preserving FBP image quality [17–19]. 

Human observer studies are often used to evaluate the dose reduc-
tion potential especially when a new algorithm is used like DLIR. 
However, these studies are time consuming and require large samples to 
obtain precise results (inter-observer variability and intra-observer 
variability is large). To overcome these limitations and to objectively 
evaluate the image quality, mathematical model observers can be used 
as a surrogate for human observers for low contrast detectability. 
Channelized Hotelling Observer (CHO) model observer correlate well to 
human performances, especially for simple tasks such as a detection of a 
signal in a small region of interest for different anatomical area. Many 
studies have shown that model observer can correlate well with human 
performance include the detection of discs in white noise and clustered 
lumpy backgrounds [20], microcalcification in mammography [21], 
breast tomosynthesis [22] nodules in computed tomography (CT) 
ramp-noise spectrum [23], nodules in breast cone beam CT [24], lung 
region [25,11] and an abdominal CT acquisition [26–31]. 

The aim of our study was to evaluate the impact of a DLIR algorithm 
(True Fidelity, TF) on image texture and low contrast lesion detectability 
in the liver compared to partial model based iterative reconstruction 
(ASIR-V). Its potential for dose reduction without impairing lesion 
detectability was also evaluated. 

Fig. 1. CT image of the anthropomorphic QRM medium (a) and large (b) abdomen phantom acquired at 20 mGy and reconstructed with True Fidelity at high level. 
The image shown is at the slice-level of the 8 mm lesions, obtained by averaging 10 series to increase signal to noise ratio for visualization purpose. 

Table 1 
Detailed settings for image acquisition and reconstruction for the five investigated radiation dose levels.  

Exposure settings QRM Medium QRM Large 

CTDIvol (mGy) 2 / 6 / 10 / 15 / 20 2 / 6 / 10 / 15 / 20 
Tube potential (kVp) 100 100 
Noise Index (mA min – mA 

max) 
70 (10–75) / 55 (100–480) / 42.5 (100–480) / 35 (100–480) / 30 
(100–480) 

70 (10–75) / 70 (10–220) / 65 (100–480) / 53 (100–480) / 46 
(100–480) 

Gantry revolution time (s) 0.5 (1 s for CTDIvol at 20 mGy) 0.5 (1 s for CTDIvol at 20 mGy) 
Beam collimation (mm) 64 × 0.625 64 × 0.625 
Pitch 0.984 0.984 
Scan field of view (cm) 50 × 50 50 × 50 
Display field of view (cm) 37 × 37 42 × 42 
Section thickness (mm) 2.5 and 0.625 2.5 and 0.625 
Section overlap (mm) 1.25/0.625 1.25/0.625 
Kernel Standard – option Plus* Standard – option Plus* 
Algorithm ASiR-V 0%+, 60%, 

TF low, medium and high 
ASiR-V 0%+, 60%, 
TF low, medium and high  

* Plus mode gives you a thicker slice thickness than prescribed. +ASiR-V 0% is used as a surrogate for FBP algorithm. ASiR-V = adaptive statistical iterative 
reconstruction, CTDIvol = volume CT dose index, TF = True Fidelity.  
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2. Materials and methods 

2.1. Experimental design, image acquisition and reconstruction protocol 

To evaluate the low contrast detectability and noise texture, we used 
a semi-anthropomorphic abdomen phantom with uniform background 
(QRM, GMBH, Moehrendorf, Germany) mimicking attenuations pro-
duced by an adult patient. The central core dimension of this phantom 
were 20 and 30 cm in anteroposterior and lateral dimension, respec-
tively. Two additional rings of 2.5 cm (size M) or 5 cm (size L) in 
thickness were added to vary patient’s morphology and simulate non- 
overweight (Body Mass Index, BMI < 25 kg.m-2) or overweight 
(BMI > 25 kg.m-2) patients (Fig. 1). A cylindrical module containing 
spherical lesions of 8 and 6 mm in diameter with a contrast of 20 HU 
relative to the background was inserted in the centre of the phantom 
(eleven spheres per lesion diameter). These spherical lesions were used 
as surrogate of focal liver lesions to evaluate low contrast detectability. 

The phantom was scanned on a CT Revolution Evo system (Revolu-
tion CT®, GE Healthcare) using standard institutional clinical CT pro-
tocols for liver tumour diagnostic tasks. Noise Index (NI) was set to 
obtain a displayed volume CT dose index (CTDIvol) equal to 2, 6, 10, 15 
and 20 mGy. The different dose levels were chosen to frame the P50 
local clinical diagnostic reference dose level (5.1 mGy for BMI < 25 kg. 
m− 2 and 8.4 mGy for BMI > 25 kg.m− 2 patients) [32]. The phantom was 
positioned at the isocenter of the CT unit and scanned ten times for each 
dose level, without changing its position between acquisitions. 

CTDIvol were calculated according to recommendations from the 
International Electrotechnical Commission (IEC 60601-2-44) and dis-
played CTDIvol was used as a figure of merit for the patient dose expo-
sure [33]. Images were reconstructed using a new DL reconstruction 
TrueFidelity (TF) algorithm at low, medium and high strength, and a 
partial model-based iterative reconstruction (adaptive statistical itera-
tive reconstruction-V, ASiR-V) at 60 % strength [19]. According to 
previous studies, ASiR-V 60 % was a superior algorithm compared to 
FBP, ASIR and other ASiR-V levels [34–36]. Based on this results and 
after a dedicated institutional optimization procedure, it was decided 
that 60 % ASiR-V was used in clinical routine for abdominal acquisi-
tions. The detailed parameters for image acquisition and reconstruction 
are reported in Table 1. 

2.2. Noise texture measurements 

Before characterizing detectability, it is important to consider the 
visual aspect of the image. In clinical routine, the change in texture or 
image appearance can minimize the impact of new technologies on the 

optimization process. The normalized noise power spectrum (NPS) with 
an eye filter (nNPSe) was used to characterize the different noise tex-
tures with FBP as gold standard [37]. NPS was calculated using an 
homemade algorithm compute using the IGOR Pro 6 scripting language 
(Wavemetrics, Inc., Portland, OR, USA) according to recommendations 
from the International Commission on Radiation Units and Measure-
ments reports 54 and 87, using region of interest in the uniform back-
ground of the phantom QRM M [38,39]. Since the image noise is not 
stationary, several ROIs (64 × 64 pixels) at different position in the x–y 
plane were used. To take into account variable perception of noise by a 
human observer, each NPS was filtered by a human visual response 
function, V (ρ), then it was normalized by its integral on all frequencies 
(nNPSe). The human visual response function parameters are those 
proposed by Solomon et al. [37]. 

We computed the mean dose level nNPSe for each reconstruction 
algorithm used in the study to obtain a general conclusion. Subsequently 
the shape of the mean nNPSe curves of each algorithm was compared for 
root mean square deviation (RMSD) to FBP according to the following 
formula: 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑R

r (x(r) − y(r))2

N

√

Where xr represents the nNPSe value at the frequency “r” for the FBP 
algorithm and yr represents the nNPSe value at the frequency “r” for TF 
at low, medium or high strength or ASiR-V at 60 %, N represents the 
total number of sample values. 

For an equivalent noise texture, curves have similar shape and 
overlap, with an RMSD equal to 0. 

The frequency at which the nNPSe (r) had its peak value (“peak 
frequency”) was also computed, and the peak frequency difference 
(PFD) was calculated with respect to FBP. A positive PFD implies a 
sharper algorithm and a negative PFD implies a smoother algorithm 
than FBP. Low RMSD and PFD values imply similar texture against FBP. 

2.3. Task-based image quality assessment 

2.3.1. Channelized Hotelling Observer 
Low contrast detectability was assessed by CHO model observer 

computed on an homemade program in python 3.3 and validated with 
an international comparison, with 10 dense difference of Gaussian 
(DDoG) channels [27,40]. However, as CHO model observer are more 
efficient than human observers for simple detection task in uniform 
background, it is necessary to adjust the detection outcomes of model 
observers by adding internal noise. In this study, the internal noise is 
diagonal matrix multiplied by a proportional factor (p) added on the 

Fig. 2. Plots of radially averaged nNPSe(r) curve for FBP, ASiR-V 60 % and TF algorithms. These curves are normalized, to highlight differences in spatial frequency 
content, independently of differences in noise magnitude. 
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covariance matrix. The p factor was calibrated on the data from the 
inter-comparison study of Ba et al. [41,40] and it was equal to 200. 

Then, to establish reliable confidence interval (CI) estimators of CHO 
performance and to overcome the bias associated with point estimates, 
the CHO performance was calculated using the method developed by 
Wunderlich et al. [42] 

For this study, after evaluating the minimal number of images 
needed [40], 110 signal-absent images and 110 signal-present images 

were respectively used to compute 110 decision variables for the 
signal-absent image category and for the signal-present image category. 
Finally, the SNR was converted in Area under the ROC curve using the 
following formula: 

AUC =
1
2
+

1
2
Φ
(

SNRt

2

)

where Φ is the normal cumulative distribution function. 
The AUC was used as figure of merit and its value ranged from 0.5 to 

1.0. The area under a ROC curve quantifies the ability to discriminate 
images with signal and images without signal. When it is impossible to 
distinguish the two groups of images, the AUC is equal to 0.5, when the 
detectability (distinction) is perfect the AUC is equal to one. 

2.4. Statistical analysis 

The potential for reducing the radiation dose of TF at different 
strength and for two slice thicknesses as reported in Table 1 were 
compared to ASiR-V applying three steps : 

Table 2 
RMSD and PFD values between the nNPSe(r) of FBP, ASiR-V and TF algorithms. 
The more RMSD and PFD are close to 0, the more the algorithm preserves FBP- 
like image noise texture. A negative PFD implies that the algorithm is smother 
than the FBP algorithm.   

RMSD (mm− 1) PFD (mm− 1) 

ASiR-V vs FBP 0.53 − 0.122 
TF Low vs FBP 0.12 − 0.043 
TF medium vs FBP 0.12 − 0.043 
TF High at 2.5 mm vs FBP 0.21 − 0.090 
TF High at 0.625 mm vs FBP 0.19 − 0.064  

Fig. 3. Area under the ROC curve as a function of the CTDIvol and algorithms investigated for 8-mm-diameter (a) and 6-mm-diameter (b) lesions for QRM M. TF 
High significantly outperformed ASiR-V 60 %. Increasing dose substantially enhanced detectability for all algorithms. For visualization purpose the AUC scale started 
at 0.7. 
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- First, for each algorithm, using a bootstrap method, a curve fit in 
terms of AUC as a function of radiation dose (CTDIvol) with a shape 
function of a*x^c / (x^c + b) was carried out from data provided by 
the CHO model observer (a, b and c are the parameters of the 
function and x represented CTDIvol). The fit was performed with the 
scipy optimize package from python 3.3.  

- Second, we calculated which CTDIvol obtained the same AUC levels 
with TF (different strengths and slice thicknesses) as with ASiR-V at 
60 % at P50 local diagnostic reference level for BMI < 25 kg.m− 2 

(5.1 mGy) for QRM medium and at local diagnostic reference level 
for BMI > 25 kg.m− 2 (8.4 mGy) for QRM Large [32]. 

- Third, from 10 000 bootstrap realizations, we constructed a distri-
bution that represents the CTDIvol difference between TF (different 
strengths and slice thicknesses) and ASiR-V 60 %. The difference was 

considered statistically significant if the 95 % confidence interval [95 
% CI] did not contain “0”. 

3. Results 

3.1. Noise texture 

Fig. 2 presents nNPSe curves for the different reconstruction modes. 
nNPSe root mean square deviation and peak frequency shifts for TF and 
ASiR-V in comparison with FBP are summarized in Table 2. In com-
parison to FBP, TF maintained noise texture with slight RMSD (≤0.21 
mm− 1) and PFD (≤0.09 mm-1). 

In contrast, change in noise texture is more pronounced with ASiR-V 
(0.53 mm− 1 for RMSD and 0.12 mm− 1 for PFD). 

3.2. Radiation dose optimization 

Fig. 3 shows AUC as a function of CTDIvol values for ASiR-V and TF 
for (a) 8 mm and (b) 6 mm lesion sizes on M-sized and corresponding 
images (Fig. 4a,b). Fig. 5a,b show AUC as a function of CTDIvol and 
corresponding images (Fig. 6a,b) for L-sized phantom. As expected, the 
detectability (AUC) increased when dose and lesion size increased and 
was always higher with TF than ASiR-V. 

For 6 mm lesions, considering the P50 local clinical DRL for 
BMI ≤ 25 patients (5.1 mGy CTDIvol), AUC was higher for TF (low: 
0.889 ± 0.026; high: 0.924 ± 0.023) than ASIR-V 60 % (0.889 ± 0.029). 
For BMI > 25 patients (8.4 mGy CTDIvol), results were similar for TF 
(low: 0.853 ± 0.033; high: 0.884 ± 0.030) compared to ASIR-V60 
(0.829 ± 0.035). 

For 8 mm lesions, at 5.1 mGy CTDIvol, AUC was higher for TF (low: 
0.926 ± 0.023; high: 0.951 ± 0.018) than ASIR-V 60 % (0.926 ± 0.023). 
For BMI > 25 patients (8.4 mGy CTDIvol), results were similar for TF 
(low: 0.909 ± 0.026; high: 0.939 ± 0.020) compared to ASIR-V60 
(0.884 ± 0.030). 

Table 3 shows the potential dose reduction obtained with TF at 
different strengths and slice thicknesses compared to ASiR-V. Mean 
CTDIvol difference for 8 and 6 mm lesion size was +2.5 % for TF low, 
− 23.5 % for TF medium and − 29 % for TF high strength for QRM me-
dium. For QRM large, mean CTDIvol difference was − 17 %, − 26 %, 
− 36.5 % for low, medium and high strength, respectively. A statistically 
significant difference was only observed for TF high strength, with 
greatest benefit at a slice thickness of 2.5 mm for a 6 mm in diameter 
sphere, with a dose reduction of − 33 % [− 66 %; − 1%]. For TF high 
strength with a slice thickness of 0.625 mm, despite the fourfold thinner 
slices, a small but not significantly dose reduction can be reached (− 2% 
[− 51 % ; +51 %]). 

4. Discussion 

To our knowledge, this study represents the first anthropomorphic 
phantom characterization for low contrast lesion detectability of a new 
deep learning-based CT reconstruction algorithm using a task-based 
paradigm in the image domain. Our results indicate that TF decreases 
noise magnitude to a level similar to ASiR-V 60 %, while minimizing 
noise texture changes when compared to FBP. This enables a sharper 
image appearance for TF on one hand and a higher dose reduction po-
tential on the other hand. 

Many studies still only use contrast-to-noise ratio (CNR) or conven-
tional Fourier-based metrics (i.e. Modulation Transfer Function) to 
assess image quality, but overestimate potential dose reduction due to 
the lack of lesion size, contrast or noise texture consideration when 
dealing with IR [12,43–45]. To overcome these limitations, our study 
used a CHO model observer in the image domain, to compute an area 
under the ROC curve as surrogate of detectability index. These model 
observer demonstrate a stronger correlation with human observer per-
formance compared to conventional CNR or standard Fourier metrics 

Fig. 4. On axial CT images, a 3.5 × 3.5 cm2 region of interest of the cylindrical 
module containing spherical lesions of 8 (a) and 6 mm (b) in diameter for QRM 
M is reconstructed with ASiR-V at 60 % and TF at the low, medium and high 
strengths as function of the dose level. Areas under the ROC curve result ob-
tained with CHO model observer for each category are indicated in each square. 
Note that for visualization purpose images are obtained by averaging 10 series 
to increase signal to noise ratio. 
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[46,47]. 
Physical characterization of TF has recently been outlined in other 

studies [48–50]. We found similar results regarding noise texture, also 
with an eye filter to simulate human noise texture visualisation. The 
noise texture in TF images was comparable to FBP in terms of spatial 
frequency content (RMSD) and spatial frequency shift (PFD) whereas 
ASiR-V provided images with low frequency content resulting in blurry 
images which makes low-contrast detections tasks challenging [11, 
51–53]. 

Greffier et al. found it possible to reduce the dose by 48 % and Racine 
et al. 61 %. However, we estimated an approximately 30 % dose 
reduction potential for TF without impairing lesion detectability in 
comparison to ASiR-V. Various points can explain these different results. 
First, we have used a CHO model observer in the image domain instead 
of NPWE model observer in Fourier domain. The NPWE model observer 
is strongly affected by noise magnitude especially in planar (2D) 
formulation without managing influence of longitudinal variations [54, 
55]. Second, the lesion size and contrast are not the same between 
studies. Greffier studied large lesion size (10 mm) and Racine studied a 
50 HU in contrast lesion: both are simulated lesions. In other 
phantom-based studies, liver lesions were generally simulated with 
contrasts in the range of − 12 to − 40 HU and sizes from 5 mm to 20 mm, 
which is consistent with our study [12,43,56]. In our study, we used 
spherical real low contrast lesions of 8 and 6 mm in diameter with a 
contrast of 20 HU relative to the background and corresponding to 

human low contrast lesions, not easily detectable in order to highlight 
the benefits of the TF algorithm in the most challenging conditions. 

The potential of TF to increase image quality and, as a consequence, 
to enable an additional dose reduction has recently been also outlined in 
few retrospective studies. Jensen et al. found that overall image quality 
and overall lesion diagnostic confidence evaluated by two radiologists 
were significantly higher for TF than ASiR-V in abdominal CT for an 
overweight population (mean body mass index of 27 ± 5 (range, 20–41)) 
[53]. They suggested that compared to FBP, TF could allow more radi-
ation dose reduction that the 25% to 40% dose reduction range found 
with ASIR-V. For another clinical task, Benz et al. found that TF provided 
superior qualitative image quality on 43 patients undergoing coronary 
CT angiography compared with ASiR-V which should contribute to a 
further reduction in the dose of CT radiation [57]. Our phantom study 
quantifies this potential dose reduction in simulating real low contrast 
lesion detectability according the strength of TF used, in order to 
determine a clinical applicable approach. 

Despite these appealing results, some limitations need to be 
mentioned. 

First, this study used phantom images. As TF was trained on phantom 
and patient images with anatomical noise, it is reasonable to expect that 
its performance evaluated on a semi anthropomorphic phantom with 
uniform background will further need a dedicated image quality study. 
3D printing of a phantom created from real patient images shall be 
conducted in the near future, but we expect these future results to 

Fig. 5. Area under the ROC curve as a function of the CTDIvol and algorithms investigated for 8-mm-diameter (a) and 6-mm-diameter (b) lesions for QRM L. Overall, 
TF with a slice thickness of 2.5 mm outperformed ASiR-V 60 % and increasing DLIR levels substantially increased detectability. For visualization purpose the AUC 
scale started at 0.6. 
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correlate with those found in this phantom study. Second, some lesions 
in the phantom would have been more similar to clinical routine if they 
contained iodine material, to assess the impact of kVp on detectability 
but this study used 100 kVp only, as in clinical practice. Third, the 
reduction in dose potential was only calculated with ASiR-V level of 60 
%. Since the detectability at low contrast is strongly affected by the 
amplitude of the noise but also by the texture of the noise, it will be 
interesting to study the reduction of the dose potential at different ASiR- 
V levels, especially at a high level. However several studies have shown 
that it is difficult to use high levels of IR in clinical practice due to 
excessive image smoothing and artificial appearance of the image [7,9, 
14]. Finally, in order to keep this study focused and concise, we 
considered out of scope to study the image quality in the other two 
reconstruction planes, which would deserve further dedicated work. 

In conclusion, TrueFidelity deep learning image reconstruction al-
gorithm improves low contrast detectability without changing noise 
texture whatever the strength or dose level in comparison to ASiR-V. For 

low-contrast diagnostic tasks in abdominal CT examinations, TF high 
strength has the potential to enable an additional dose optimization of 
approximately 30 % compared to current IR techniques. The introduc-
tion of DLIR algorithms in clinical routine marks the beginning of a new 
era for CT dose optimization. Future studies using a task based paradigm 
assessment performed using other anatomical localization and therefore 
with a different anatomical texture will be carried out to confirm the 
impact of DLIR algorithms. 
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Fig. 6. On axial CT images, a 3.5 × 3.5 cm2 region of interest of the cylindrical 
module containing spherical lesions of 8 (a) and 6 mm (b) in diameter for QRM 
L is reconstructed with ASiR-V at 60 % and TF at the low, medium and high 
strengths as function of the dose level. Areas under the ROC curve result ob-
tained with CHO model observer for each category are indicated in each square. 
Note that for visualization purpose images are obtained by averaging 10 series 
to increase signal to noise ratio. 

Table 3 
Potential dose reduction with TF compared to ASiR-V 60 % (ΔD) [±95 % CI]. 
Dose reduction is calculated for an AUC value obtained with ASiR-V 60 % at 
5.1 mGy for QRM medium and 8.4 mGy for QRM large corresponding to P50 
local clinical DRLs for liver tumour assessment. *p < 0.05 (significant).  

Dose reduction potential (ΔD)  

QRM M QRM L 

Reconstruction algorithms 
compared / sphere 
dimension 

6 mm 8 mm 6 mm 8 mm 

TF High 2.5 mm vs ASiR-V 
60 % 

− 33%* 
[− 66 % ; 
− 1%] 

− 25% 
[− 54 % ; 
+4%] 

− 33%* 
[− 58 ; 
− 9%] 

− 40% * 
[− 60 % ; 
− 19 %] 

TF medium 2.5 mm vs ASiR- 
V 60 % 

− 26% 
[− 67 % ; 
1%] 

− 21% 
[− 53 % ; 
+10 %] 

− 29%* 
[− 56 ; 
− 1%] 

− 23% 
[− 51 
%;+4%] 

TF low 2.5 vs ASiR-V 60 % +2% 
[− 48 % ; 
+52 %] 

+3% 
[− 40 % ; 
+47 %] 

− 16% 
[− 49 ; 
+17 %] 

− 18% 
[− 48 
%;+10 %] 

TF high 0.625 mm vs ASiR-V 
60 % 

− 2% 
[− 51 % ; 
+51 %] 

+10 % 
[− 39 % ; 
+60 %] 

− 1%* 
[− 42 ; 
− 38 %] 

− 6% 
[− 44 
%;+31 %]  
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